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ABSTRACT Frequency estimation in noise-contaminated signal is a
well-known problem in signal processing [Rife, 1974]. It

This paper describes an object classification algorithm is well studied for speech recognition under Gaussian
for infrared videos. Given a detected and tracked object, noise assumption. The optimal maximum likelihood

the goal is to analyze the periodic signature of its motion estimator (MLE) is obtained by locating the peak in the

pattern. We propose an efficient and robust solution periodogram. The estimator achieves the Cramer-Rao

similar to frequency estimation techniques in speech lower bound for high SNR [Key, 1989]. However, the

processing. Periodic reference functions are correlated computational cost is high even with FFT. Additionally,

with the video signal. In order to capture the frequency there exists a bias when the signal is not an ideal

response at a given set of period, we explore a local sinusoid.

version of DFT. By estimating the periodicity at every
pixel, we obtain the overall response for the object, Several solutions have been proposed for measuring the

which helps us to make decision robustly. Experimental periodicity of human motion. [Seitz, 1997] presented a 3-

results for both infrared and visible videos acquired by D based detection scheme in curvature space. Polana and

ground-based as well as airborne moving sensors are Nelson [Polana, 1999] present an approach using DFT.

presented. [Efros, 2003] identified the cyclic motion in optical flow
domain.

1. INTRODUCTION
A method closely related to this paper can be found in [1].

1.1 Motivation The authors used pixel-level correlation to calculate the
similarity matrix. Every entry in the matrix represents

Automatic human activity recognition from video has the similarity between two images of the same object.

recently attracted the attention of many researchers The periodic property appears as darker lines parallel to

[Cutler 2000, Fujiyoshi, 1998, Hogg 1983, 2003]. It plays the diagonal line (e.g. in Figure 4) and is detected using

a critical role in surveillance systems that aim to know Short Time Frequency Analysis [Cutler, 2000]. Another

what the objects are, and what they are doing [Haritaoglu, commonly used method is to use segmented silhouettes.

2000]. The periodic nature of human motion has been [Fujiyoshi, 1998] provided a real-time method based on

widely used in gait recognition and related applications image skeletonization. It uses a 'star' model extracted

[Hogg, 1983; Li, 2002]. The goal of this work is to from a detected silhouette to describe the targets' contour
classify an object as either a human or a vehicle based on distribution. The evolution of "star" over time reveals the

its motion pattern. underlying human body motion.

1.2 Related Work There are limitations to the above approaches. The

approach in [Cutler, 2000] requires calculation of a

Among the many moving object classification methods, similarity matrix between all pairs of images, which is

motion signature analysis is a simple and promising computationally expensive. Another problem is that it is

approach, especially for infrared and airborne video sensitive to object misalignment as well as changing

processing, which typically have low image contrast and background. The skeletonization method relies on

small object size. Periodic motion signatures are robust contour extraction and is sensitive to the quality of

low level clues in these situations. silhouette generated. Silhouette detection is a
challenging task especially when video contrast is low,
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the object is small (for example 10 x 10 pixels as in the only have a finite length of signal. And due to noise, the
applications addressed here), or the camera is moving, signal will be corrupted and the period in the frequency

domain will be difficult to detect as shown in Fig 1 (B).
Our goal is to develop a computationally efficient and The repeated peaks quickly attenuate.
robust periodicity motion analysis algorithm which works
well in infrared and airborne videos. In such situations, it
is very hard to obtain an accurate silhouette of moving
objects. A periodic signal will have peaks at multiples of A/
the period in its power spectral density (PSD). We A
compare a set of a priori signals having some specific
periods with the original wave formed by the evolution of
a pixel along the temporal axis. When they match, the
cross-correlation will approach the maximum. The
reference signals are designed based on pattern of typical B
human motion.

1.3 Assumptions

We assume that the moving objects have been detected C
and tracked. They are specified by bounding boxes in
each frame. We assume that the detected objects have Figure 1 Periodic signals and their power spectrum
been normalized to a fixed size. No constraints on the
background are made. The basic idea is to focus on responses at a finite set of

frequencies, which are likely associated with the period
1.4 Brief Algorithm Overview of human motion. Let us first explore a simple example.

Let W (t) be the signal W (t) =cos(ovt). Its discrete form
The main idea includes using a finite frequency set to

probe the images of an object for its periodic signature is W (n) = cos(w * n). We use another cosine signal with

and using the period and its strength for classification. A frequency 0O! to correlate with W(n):N

concise signal is derived from the periodic and C(W,W) ) N

symmetrical nature of human motion as an a priori n o(

reference. The method is efficient due to low where N is the signal length. Row C of Fig. 1 gives the
computation cost. The period detection is transformed response at different ? '. It is clear that the response will
into a global-maximum location process. It works well have a global maximum at 0), even if we only use a
for low contrast and small size targets where other signal with finite number of periods. The probing is
methods have difficulties. defined as follow.

Definition 1: Probing is a process of matching a
2. PERIODICITY ANALYSIS BY FINITE periodic reference signal to the target signal to obtain a

FREQUENCIES PROBING measure of their correlation.

2.1 Periodic Signal Probing Starting with a quasi-periodic signal W(t) = W (t + nT),

The idea of using a reference signal to correlate with the where T is the quasi-period of the signal. If we use a

original target signal derives from Fourier domain temporal window to truncate the sample of W(t) , we

analysis. An illustration is in Fig. 1. Shown in Fig. 1 (A) will get a vector W(t) =[W(t),W(t+t)....W(t+(N -lIft)] •
is a signal consisting of the superposition of two cosines Given a reference signal W' and under additive
and the magnitude of its power spectrum (DFT Gaussian noise, at T the following a posteriori
coefficients). There are two peaks corresponding to the probability is maximized
two base frequencies. 1 II W(t) - s(t, T)W'(t) i (2

In the ideal case, the power spectrum of a periodic signal (2Rcy2 )N12 272

shows peaks at multiples of that period. In reality, we
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where s(t,T) is a scaling function and H is the probing function is the signal itself, because the

hypothesis that period is T. Partial differentiation gives correlation will approach maximum. Since the input

d IIW(t)j- s(tTW'(tIf- W(tW'(t (2') signal is not available in advance, several possible
t0wT) 2(y 1W' =O•1's(t, W(t) 1 functions are tested and compared. By intuition, theas(t,T)jo IIW(tj IIIW'(tj II

triangle and cosine/sine functions appear to be appealing

Using Bayes rule we have due to their simple and representative form. Analysis of
P Petypical human walking will give more suitable reference

PHT, (H T 1W (t)) s(r)IIH• TPH (3) signals.
Pw (r)

The best estimate of the quasi-period is the frequency We have observed that a video of walking pedestrian will
which maximizes the cross correlationc(w,w,). have both period and symmetry due to movement of legs

and arms. This can be used to design the reference signal.

2.2 Probing with Finite Frequency Sets Observations from [Cutler, 2000, 1998] suggest
designing a twin-peak reference signal representing both

There are two major concerns for real signals. One is periodicity and symmetry. Figure 2 illustrates these two

segmentation of object from the background. Infrared properties. It is a complete cycle of a walking human. In

videos usually have low contrast. In some cases the addition to the similarity between cycles, there is also

camera is moving, so we cannot use the background resemblance between the first and the second halves,

subtraction method [Culter, 2000]. The other concern is shown as two rows in Figure 2.

computation cost. I • r I 8 5

The output of the detecting/tracking module gives a
sequence of bounding boxes for every object. After
alignment, we will have a stack of rectangles with the
same size and object center. A probing function with
period ? and waveform k is defined as Ok (CO) = k(int).

The overall cost function is defined over the whole Figure 2 Illustration of period and symmetry of walking
definition space of W (t, x, y), where W (t, x, y) is the

pixel or a corresponding feature at location (x, y) at We investigated the similarity between pedestrian

time t. sequences in left two images of Figure 3 using the
(4) tmethod in [Cutler, 2000]. After simple smoothing, we

C(k)= f ffk(Do).W(tx,y)dtdydx (4) noticed that there are two peaks in every cycle due to
S,-period and symmetry mentioned above.

In practice, we have limited length and size and the
discrete version is:

C(k,o)= X Xcor(tk(om),W(n,x,y))
x-I yIl

Our goal is to calculate the overall correlation of the
signal W by summing up the value at each location (x, y)

with a same reference signal F at frequency ? . The Figure 3 Similarity signals and twin-peak signal
period is defined from (3) and (4') as the ? in Hence we use a twin-peak reference signal for probing. It

(w,, . w), which maximizes the averaged response is generated by combining two sinusoids as shown in the

function (4). right image in Figure 3. The first peak, due to period,
period = argnax PH w (HT IW(t)) = argrmax C(k,co) appears at the multiples of period T and the second, due

S0e{I,,2..1~m} (5) to symmetry, at (n + 1/2)T.

agn X cIYor($Dk(mo),W(n,x,y))
G101,02..•,,I x1 y-1 The probing results for pedestrians are shown in Figure 4.

Two examples are presented. One is a ground-based
2.3 Periodicity Detection infrared video and the other is an airborne video. The

second row of Figure 4 shows the correlation matrices
To detect the period efficiently, we need to select the calculated as in [Cutler, 2000]. Although there are darker
appropriate probing function k. Given a signal, the ideal lines parallel to the diagonal line in the airborne data
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corresponding to the period, we cannot find any in the 2.4 Object Classification
correlation matrix for a walking human in infrared video.
Yet the probing method detects distinct peak at the Period detection now becomes a simple process as
periodic frequency as shown in the third row in Figure 4. finding a global maximum as defined in (5) within the

finite frequency set, which could be implemented with
many fast and reliable methods. The decision as to
whether or not a moving object is a person is made as
follows: a candidate object is classified as a human if and
only if at some time t, the global peak satisfies

Peak - Mean >TH (7)

Variance
In Equation (7), Peak is the maximum value over all
probing frequencies. Mean and Variance is the standard
statistics of all the correlation coefficients excluded those
located within a local support window with a given size
centered at the index giving maximum. TH is the
threshold for a confident decision. In our experiments,
typical values are between 2 to 4.

3. EXPERIMENTAL RESULTS

This section describes the classification results of the
- proposed algorithm. It includes details on the structure of

the data as well as results on both infrared and visible
videos.

3.1 Structure of Testing Data

Figure 4 Period detection for two pedestrian videos. Two datasets were tested. The first dataset is from

In order to have a better idea about how well this method infrared ground sensors. This set consists of 10
works, we plot the intensity change in Figure 5 for a sequences containing more than 20 clips (15 pedestrians
column of pixels (They are in the dark line in the right and 5 vehicles). The foreground objects include typical
image) from a human in left column of Figure 4. scenes such as a parking lot, a road, and other urban
Although the period is only in several pixels and is even scenarios. There are different objects with various sizes
hard to identify by eyes, the proposed algorithm and poses. The second dataset is gray level airborne
successfully detects it. videos. There are 10 human sequences and 5 vehicle

sequences. All data are captured at a speed of 30 frames
S, ,per second. For both datasets, the detection and tracking

120.1. . algorithms we used are reported in [Culter, 2000;

______ _____ ,__ _ _ Haritaoglu, 2000].

130 
3.2 Experiments on Infrared Videos

In Figure 6, we present the probing process at a given

1f00 010 200 . 20t00 time. The video length is 60 frames, which corresponds
--- .to about two cycles of a normal walking pedestrian.

•°0° ,j i•00 The result is shown for detecting the periodic motion for
different targets. The blue line is the plotted response
and the red line is the mean of the response over all

frequencies. These are humans walking through an urban
Figure 5 Intensity evolution for pixels along a column scene at different poses. All of them have a dominant

twin-peak correctly classified using (7).
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interval is shown. The left image is the superimposedw ,,response for 5 different times for a 100-frame pedestrian
sequence. Not only is the twin-peak pattern distinct, but

Period: 30 also the period consistently falls into a narrow range
frame/cycle around 25 frames/cycle, which is shown in the right

.Human image. By checking this consistency, the object can be

classified with high confidence as a pedestrian.

.... ............. P eriod: 28
frame/cycle
Human

No period Figure 7. Continuous period detection in infrared data.

"Vehicle (Left) responses over five different time periods; (Right)
MW ,plot of detected periods at different time.

3.3 Experiments on Airborne Videos

In the airborne sequence, targets are moving humans and
videos, vehicles on the ground. Object sizes are less than l0xl0

pixels. Leg periodic motions are less obvious in overhead

Then we perform the similar algorithm on ground based views. Figure 8 and Figure 9 show experiment results.

video and present the result in Figure 6(b). The proposed method manages to classify the targets
correctly.

SResponse Figure 8 provides classification results for two human

Period: 30 and a car. In Figure 9, the continuous probing result is
frame/cycle shown for a human and a vehicle. Unlike the case for

J Human human, the detected periods for a vehicle are randomly
distributed in a wide range.

Response Period: 28

frame/cycle UPeriod: 30
Human . .

" Human frame/cycle

Human

-7 22 27 3

SResponse No period
Vehicle Period: 28

frame/cycle
Human

Figure 6(b) Probing for different objects in ground
based videos No period

Vehicle

For more reliable classification, we may check the
consistency of the periodicity over time. In Figure 7, a _ __ ____...........__

continuous human period detection over a long time Figure 8 Results for airborne surveillance video



Table 1. Comparison at different alignment error

S 1 30
SPeriod 34 34 33 34 32 36

C(%) 95.6 78.9 50.2 37.1 12.2 5.8

4.3 Object Size

Figure 9 Continuous period detection for human (left)
and a car (right) in airborne videos. We give the measurement for one sequence with

different down-sampled sizes. This method exhibits a
strong invariance to the object size. We obtain good

4. SENSITIVITY ANALYSIS results even when the target size is reduced to l0xl0.
Notice that during the sub-sampling, the detected period

We have tested several key factors of the algorithm does not change. We give the change in peak/mean ratio

which may affect the result. In the evaluation, we pay in Table 2.

special attentions to following two questions:
"* Will still detect the twin pattern when we change a Table 2. Comparison at different target sizes (original is

key experimental factors; 100x80)

"* To what extend will the result be affected in terms Sub-sample ratio 2 4 6 8

of peak/mean ratio. C(% 93.2 87.9 76.3 7.
We use a variable C defined as the change of the
peak/mean ratio in percentage when we change a 4.4 Video Length
condition.

C=abs(P/M-P'/M')/(P/M)×xO0% (8) An interesting issue is the minimal length needed to

where P, M is the original peak and mean value and P', analyze the period with sufficient confidence. This is

M' is the new values after changing some factors. equivalent to considering the size of window we use to
truncate the signal. Suppose we estimate the frequency
directly from FFT result without any further processing

4.1 Computational Cost [Kay, 1989]. If the true period is ?, and it falls into two

The first factor we are concerned with is the speed of the adjacent bins: k and k+1,

method. Suppose the bounding boxes after alignment

have a width w and a height h, and the video length is N where Fsample is the sample frequency, we will have a

frames. The probing frequency ranges over n frequencies. bias up to the width of the bin. Hence this method

Then the required addition and multiplication operations requires longer sequence for higher resolution. But this is

are N*w*h*n respectively. The time is given by: determined by the tracking algorithm, and thus it is not

T = N. w h (ADD + MUL). n always easy to achieve in low quality video, small object,

which is a linear computation time in terms of N or n. and from a moving platform. In the proposed method, for

The processing time can be further reduced by using a typical human, we need about two to three cycles (60-

multi-resolution probing. A coarse frequencies set is first 90 frames for a 30 fps video) to estimate the correct

used to roughly locate the global maximum. Then a period.

denser set is generated around the detected frequency Besides, the cross-correlation of the two signals will
and used to obtain refined frequency. attain maximum when the windows (length) is a multiple

4.2 Alignment of the period. Hence there would be residue in (5) if this
is not true. The error can be suppressed by summation

The cost function requires good alignment of the frames over all pixels, which is a topic for future work.

for the detected objects since it use pixel wise temporal 4.5 Frame Rate
correlation. Current detecting and tracking algorithms
cannot provide error-free alignment for bounding boxes.Tonget arovide quantitat e argisnwen add Gaussiang noise Due to sensor limitation, we may be unable to get the full
To agset o cuatibratied boundrisong boxes. Bd isiang tie frame rate all the time. In addition, robustness to frameto a set of calibrated bounding boxes. By increasing the rt r p c ud b sfl f r s vn v rl
variance, we measure the peak/mean ratio change rateodro couli
compared to the original result. Table 1 shows the result. computational cost.
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Seitz, S.M., Dyer, C.R., 1997, "View-invariant analysis of

Table 3. Comparison at different frame rates cyclic motion," Intl Journal of Computer Vision, 25:1-23.

frame rate 20 15 10 5

period 17(34) 16(32) 11(33) 5(25)

C(%) 95.0 87.9 46.3 20.1

In the second row, the number in parenthesis is the
normalized period of the original frame rate. The results
show that the probing is more sensitive to down sampling
in object size than in frame rate.

5. SUMMARY AND DISCUSSION

A periodicity motion detection based object classification
algorithm is reported. The method is simple, efficient,
and robust to target size and frame rate. It transforms the
complicated period detection into an easier global
maximum location process. The choice of the probing by

a priori reference signal within a finite frequency set
enables accurate object classification even with a short
video clip (2-3 seconds). Sensitivity analysis reveals that
robust nature of the proposed method.
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